Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
2.
J Pediatr Endocrinol Metab ; 37(3): 260-270, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353291

RESUMO

OBJECTIVES: Primary Coenzyme Q10 Deficiency-7 (OMIM 616276) results from bi-allelic pathogenic variants in the COQ4 gene. Common clinical findings include hypotonia, seizures, respiratory distress, and cardiomyopathy. In this report, we present two patients diagnosed with Primary Coenzyme Q10 Deficiency-7 along with a review of previously published cases, with the aim being to provide a better understanding of the clinical and laboratory manifestations of the disease. CASE PRESENTATION: A 3-month-and-22-day-old male was admitted to our outpatient clinic due to poor feeding and restlessness. He was born following an uneventful pregnancy to a nonconsanguineous marriage. A physical examination revealed hypotonia, a dolichocephaly, periorbital edema, and long eyelashes. Blood tests revealed metabolic acidosis and elevated serum lactate levels, while the genetic analysis revealed a variant previously reported as pathogenic, c.437T>G (p.Phe146Cys), in the COQ4 gene. Genetic tests were also conducted on both mother and father, and it revealed heterozygous variant, 0.437T>G (p.Phe146Cys), in the COQ4 gene. As a result of these findings, the patient was diagnosed with neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome (Primary Coenzyme Q10 Deficiency-7). A 1-year-old male was admitted to our clinic with complaints of hypotonia, seizures, and feeding difficulties. He was born following an uneventful pregnancy to a nonconsanguineous marriage. On his first day of life, he was admitted to the neonatal intensive care unit due to poor feeding and hypotonia. A physical examination revealed microcephaly, a high palate, poor feeding, weak crying, hypotonia, bilateral horizontal nystagmus, and inability to maintain eye contact. Laboratory findings were within normal limits, while a whole exome sequencing analysis revealed a homozygous variant previously reported as pathogenic, c.458C>T (p.A153V), in the COQ4 gene. The patient was diagnosed with Primary Coenzyme Q10 Deficiency-7. CONCLUSIONS: Primary Coenzyme Q10 Deficiency-7 should be considered in the differential diagnosis of infants presenting with neurological and dysmorphic manifestations.


Assuntos
Ataxia , Cardiomiopatias , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona/deficiência , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Masculino , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Doenças Mitocondriais/patologia , Ubiquinona/genética , Convulsões/complicações , Cardiomiopatias/complicações
3.
Free Radic Biol Med ; 214: 158-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364943

RESUMO

This study examined the effects of hypoxia on coenzyme Q (Q) levels and mitochondrial function in EA. hy926 endothelial cells, shedding light on their responses to changes in oxygen levels. Chronic hypoxia during endothelial cell culture reduced Q synthesis by reducing hydroxy-methylglutaryl-CoA reductase (HMGCR) levels via hypoxia-inducible factor 1α (HIF1α), leading to severe Q deficiency. In endothelial mitochondria, hypoxia led to reorganization of the respiratory chain through upregulation of supercomplexes (I+III2+IV), forming a complete mitochondrial Q (mQ)-mediated electron transfer pathway. Mitochondria of endothelial cells cultured under hypoxic conditions showed reduced respiratory rates and membrane potential, as well as increased production of mitochondrial reactive oxygen species (mROS) as a result of increased mQ reduction levels (mQH2/mQtot). Anoxia/reoxygenation (A/R) in vitro caused impairment of endothelial mitochondria, manifested by reduced maximal respiration, complex III activity, membrane potential, coupling parameters, and increased mQ reduction and mROS production. Weaker A/R-induced changes compared to control mitochondria indicated better tolerance of A/R stress by the mitochondria of hypoxic cells. Moreover, in endothelial mitochondria, hypoxia-induced increases in uncoupling protein 3 (UCP3) and mitochondrial large-conductance Ca2+-activated potassium channel (mitoBKCa) levels and activities appear to have alleviated reoxygenation injury after A/R. These results not only highlight hypoxia-induced changes in mQ redox homeostasis and related mitochondrial function, but also indicate that chronic hypoxia during endothelial cell culture leads to mitochondrial adaptations that help mitochondria better withstand subsequent oxygen fluctuations.


Assuntos
Ataxia , Células Endoteliais , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona/deficiência , Humanos , Transporte de Elétrons , Mitocôndrias , Hipóxia , Oxigênio
4.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316953

RESUMO

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Assuntos
Ataxia , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Ubiquinona/deficiência , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Seguimentos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Mutação , Proteínas do Complexo SMN/genética
5.
Epilepsy Behav ; 149: 109498, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948995

RESUMO

Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.


Assuntos
Cardiomiopatias , Epilepsia , Doenças Mitocondriais , Feminino , Humanos , Gravidez , Ataxia/tratamento farmacológico , Ataxia/genética , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/deficiência , Ubiquinona/metabolismo
6.
Nat Commun ; 13(1): 6061, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229432

RESUMO

Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.


Assuntos
Doenças Mitocondriais , Ubiquinona , Ataxia , Humanos , Manganês/toxicidade , Doenças Mitocondriais/metabolismo , Oxigenases de Função Mista , Debilidade Muscular , Ubiquinona/deficiência , Ubiquinona/metabolismo
7.
Biomed Res Int ; 2022: 5250254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124066

RESUMO

Primary coenzyme Q10 (CoQ10) deficiency refers to a group of mitochondrial cytopathies caused by genetic defects in CoQ10 biosynthesis. Primary coenzyme Q10 deficiency-6 (COQ10D6) is an autosomal recessive disorder attributable to biallelic COQ6 variants; the cardinal phenotypes are steroid-resistant nephrotic syndrome (SRNS), which inevitably progresses to kidney failure, and sensorineural hearing loss (SNHL). Here, we describe the phenotypes and genotypes of 12 children with COQ10D6 from 11 unrelated Korean families and quantitatively explore the beneficial effects of CoQ10 replacement therapy on SNHL. A diagnosis of SRNS generally precedes SNHL documentation. COQ10D6 is associated with progressive SNHL. Four causative COQ6 variants were identified in either homozygotes or compound heterozygotes: c.189_191delGAA, c.484C>T, c.686A>C, and c.782C>T. The response rate (no further hearing loss or improvement) was 42.9%; CoQ10 replacement therapy may thus limit and even improve hearing loss. Notably, the audiological benefit appeared to be genotype-specific, suggesting a genotype-phenotype correlation. The results of cochlear implantation were generally favorable, and the effects were sustained over time. Our results thus propose the beneficial effects of CoQ10 replacement therapy on hearing loss. Our work with COQ10D6 patients is a good example of personalized, genetically tailored, audiological rehabilitation of patients with syndromic deafness.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Síndrome Nefrótica , Ataxia , Surdez/genética , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/genética , Humanos , Doenças Mitocondriais , Debilidade Muscular , Síndrome Nefrótica/genética , Esteroides , Ubiquinona/análogos & derivados , Ubiquinona/deficiência
8.
Mov Disord ; 37(10): 2147-2153, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047608

RESUMO

BACKGROUND: COQ4 codes for a mitochondrial protein required for coenzyme Q10 (CoQ10 ) biosynthesis. Autosomal recessive COQ4-associated CoQ10 deficiency leads to an early-onset mitochondrial multi-organ disorder. METHODS: In-house exome and genome datasets (n = 14,303) were screened for patients with bi-allelic variants in COQ4. Work-up included clinical characterization and functional studies in patient-derived cell lines. RESULTS: Six different COQ4 variants, three of them novel, were identified in six adult patients from four different families. Three patients had a phenotype of hereditary spastic paraparesis, two sisters showed a predominant cerebellar ataxia, and one patient had mild signs of both. Studies in patient-derived fibroblast lines revealed significantly reduced amounts of COQ4 protein, decreased CoQ10 concentrations, and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: We report bi-allelic variants in COQ4 causing an adult-onset ataxia-spasticity spectrum phenotype and a disease course much milder than previously reported. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Proteínas Mitocondriais , Ubiquinona , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Espasticidade Muscular , Debilidade Muscular , Mutação/genética , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
9.
J Cell Mol Med ; 26(17): 4635-4644, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985679

RESUMO

Coenzyme Q10 (CoQ10 ) is necessary for mitochondrial electron transport. Mutations in CoQ10 biosynthetic genes cause primary CoQ10 deficiency (PCoQD) and manifest as mitochondrial disorders. It is often stated that PCoQD patients can be treated by oral CoQ10 supplementation. To test this, we compiled all studies describing PCoQD patients up to May 2022. We excluded studies with no data on CoQ10 treatment, or with insufficient description of effectiveness. Out of 303 PCoQD patients identified, we retained 89 cases, of which 24 reported improvements after CoQ10 treatment (27.0%). In five cases, the patient's condition was reported to deteriorate after halting of CoQ10 treatment. 12 cases reported improvement in the severity of ataxia and 5 cases in the severity of proteinuria. Only a subjective description of improvement was reported for 4 patients described as responding. All reported responses were partial improvements of only some symptoms. For PCoQD patients, CoQ10 supplementation is replacement therapy. Yet, there is only very weak evidence for the efficacy of the treatment. Our findings, thus, suggest a need for caution when seeking to justify the widespread use of CoQ10 for the treatment of any disease or as dietary supplement.


Assuntos
Doenças Mitocondriais , Ubiquinona , Ataxia/tratamento farmacológico , Ataxia/genética , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/genética , Ubiquinona/deficiência , Ubiquinona/uso terapêutico
10.
Clin Genet ; 102(4): 350-351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35791803

RESUMO

We report a 19-month-old patient with cardiomyopathy as the first presenting feature of primary COQ10 deficiency-6. This case expands the phenotypic spectrum of this disorder. Furthermore, it shows that genetic testing for primary COQ10 deficiency should be considered in patients with pediatric-onset cardiomyopathy as it can guide treatment options.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Ataxia/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Humanos , Lactente , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Debilidade Muscular , Mutação , Ubiquinona/deficiência
11.
Parkinsonism Relat Disord ; 99: 91-95, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642996

RESUMO

INTRODUCTION: Primary coenzyme Q10 (CoQ10) deficiency, a recessive disorder associated with various defects of CoQ10 biosynthesis and widely varying clinical presentation, is customarily managed by oral Q10 supplementation but the benefit is debated. METHODS: To address this question, we mapped individual responses in two patients with COQ8A-related ataxia following coenzyme Q10 supplementation using noninvasive imaging. Metabolic 31phosphorus magnetic resonance spectroscopy imaging (31P-MRSI) and volumetric cerebellar neuroimaging were performed to quantify the individual treatment response in two patients with COQ8A-related ataxia, each compared with eight age- and gender-matched healthy control subjects. RESULTS: Post-treatment change in energy metabolite levels differed in the two patients, with higher energy levels and improved dysarthria and leg coordination in one, and decreased energy levels without clinical benefit in the other. CONCLUSIONS: Our results suggest that the cerebellar bioenergetic state may predict treatment response in COQ8A-related ataxia and highlight the potential of pathophysiology-orientated neuroimaging evidence to inform treatment decisions.


Assuntos
Ataxia Cerebelar , Doenças Mitocondriais , Ataxia/complicações , Ataxia/diagnóstico por imagem , Ataxia/tratamento farmacológico , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Metabolismo Energético , Humanos , Doenças Mitocondriais/complicações , Debilidade Muscular/complicações , Ubiquinona/deficiência , Ubiquinona/uso terapêutico
12.
Kidney Int ; 102(3): 604-612, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643375

RESUMO

Primary Coenzyme Q10 (CoQ10) deficiency is an ultra-rare disorder caused by defects in genes involved in CoQ10 biosynthesis leading to multidrug-resistant nephrotic syndrome as the hallmark kidney manifestation. Promising early results have been reported anecdotally with oral CoQ10 supplementation. However, the long-term efficacy and optimal prescription remain to be established. In a global effort, we collected and analyzed information from 116 patients who received CoQ10 supplements for primary CoQ10 deficiency due to biallelic pathogenic variants in either the COQ2, COQ6 or COQ8B genes. Median duration of follow up on treatment was two years. The effect of treatment on proteinuria was assessed, and kidney survival was analyzed in 41 patients younger than 18 years with chronic kidney disease stage 1-4 at the start of treatment compared with that of an untreated cohort matched by genotype, age, kidney function, and proteinuria. CoQ10 supplementation was associated with a substantial and significant sustained reduction of proteinuria by 88% at 12 months. Complete remission of proteinuria was more frequently observed in COQ6 disease. CoQ10 supplementation led to significantly better preservation of kidney function (5-year kidney failure-free survival 62% vs. 19%) with an improvement in general condition and neurological manifestations. Side effects of treatment were uncommon and mild. Thus, our findings indicate that all patients diagnosed with primary CoQ10 deficiency should receive early and life-long CoQ10 supplementation to decelerate the progression of kidney disease and prevent further damage to other organs.


Assuntos
Doenças Mitocondriais , Síndrome Nefrótica , Ubiquinona , Ataxia/tratamento farmacológico , Suplementos Nutricionais , Humanos , Rim/patologia , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Mutação , Síndrome Nefrótica/complicações , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Proteinúria/diagnóstico , Proteinúria/tratamento farmacológico , Esteroides/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ubiquinona/uso terapêutico
13.
Mitochondrion ; 65: 1-10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500860

RESUMO

Brown adipose tissue (BAT) mitochondria generate heat via uncoupled respiration due to excessive proton leak through uncoupling proteins (UCPs). We previously found hyperthermia in a newborn mouse model of fragile X syndrome and excessive leak in Fmr1 KO forebrain mitochondria caused by CoQ deficiency. The inefficient thermogenic nature of Fmr1 mutant forebrain mitochondria was reminiscent of BAT metabolic features. Thus, we aimed to characterize BAT mitochondrial function in these hyperthermic mice using a top-down approach. Although there was no change in steady-state levels of UCP1 expression between strains, BAT weighed significantly less in Fmr1 mutants compared with controls. Fmr1 KO BAT mitochondria demonstrated impaired substrate oxidation, lower mitochondrial membrane potentials and rates of respiration, and CoQ deficiency. The CoQ analog decylubiquinone normalized CoQ-dependent electron flux and unmasked excessive proton leak. Unlike mutant forebrain, where such deficiency resulted in pathological proton leak, CoQ deficiency within BAT mitochondria resulted largely in abnormal substrate oxidation. This suggests that CoQ is important in BAT for uncoupled respiration to produce heat during development. Although our data provide further evidence of a link between fragile X mental retardation protein (FMRP) and CoQ biosynthesis, the results highlight the importance of CoQ in developing tissues and suggest tissue-specific differences from CoQ deficiency. Because BAT mitochondria are primarily responsible for regulating core body temperature, the defects we describe in Fmr1 KOs could manifest as an adaptive downregulated response to hyperthermia or could result from FMRP deficiency directly.


Assuntos
Tecido Adiposo Marrom , Síndrome do Cromossomo X Frágil , Tecido Adiposo Marrom/metabolismo , Animais , Ataxia , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Debilidade Muscular , Prótons , Ubiquinona/deficiência
14.
Kidney Int ; 102(3): 592-603, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35483523

RESUMO

Primary Coenzyme Q10 deficiency is a rare mitochondriopathy with a wide spectrum of organ involvement, including steroid-resistant nephrotic syndrome mainly associated with disease-causing variants in the genes COQ2, COQ6 or COQ8B. We performed a systematic literature review, PodoNet, mitoNET, and CCGKDD registries queries and an online survey, collecting comprehensive clinical and genetic data of 251 patients spanning 173 published (47 updated) and 78 new cases. Kidney disease was first diagnosed at median age 1.0, 1.2 and 9.8 years in individuals with disease-causing variants in COQ2, COQ6 and COQ8B, respectively. Isolated kidney involvement at diagnosis occurred in 34% of COQ2, 10.8% of COQ6 and 70.7% of COQ8B variant individuals. Classic infantile multiorgan involvement comprised 22% of the COQ2 variant cohort while 47% of them developed neurological symptoms at median age 2.7 years. The association of steroid-resistant nephrotic syndrome and sensorineural hearing loss was confirmed as the distinctive phenotype of COQ6 variants, with hearing impairment manifesting at average age three years. None of the patients with COQ8B variants, but 50% of patients with COQ2 and COQ6 variants progressed to kidney failure by age five. At adult age, kidney survival was equally poor (20-25%) across all disorders. A number of sequence variants, including putative local founder mutations, had divergent clinical presentations, in terms of onset age, kidney and non-kidney manifestations and kidney survival. Milder kidney phenotype was present in those with biallelic truncating variants within the COQ8B variant cohort. Thus, significant intra- and inter-familial phenotype variability was observed, suggesting both genetic and non-genetic modifiers of disease severity.


Assuntos
Síndrome Nefrótica , Ataxia , Estudos de Associação Genética , Humanos , Doenças Mitocondriais , Debilidade Muscular , Mutação , Síndrome Nefrótica/diagnóstico , Esteroides , Ubiquinona/deficiência
15.
Open Heart ; 9(1)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296520

RESUMO

For reasons that remain unclear, endogenous synthesis and tissue levels of coenzyme Q10 (CoQ10) tend to decline with increasing age in at least some tissues. When CoQ10 levels are sufficiently low, this compromises the efficiency of the mitochondrial electron transport chain, such that production of superoxide by site 2 increases and the rate of adenosine triphosphate production declines. Moreover, CoQ10 deficiency can be expected to decrease activities of Sirt1 and Sirt3 deacetylases, believed to be key determinants of health span. Reduction of the cytoplasmic and mitochondrial NAD+/NADH ratio consequent to CoQ10 deficit can be expected to decrease the activity of these deacetylases by lessening availability of their obligate substrate NAD+ The increased oxidant production induced by CoQ10 deficiency can decrease the stability of Sirt1 protein by complementary mechanisms. And CoQ10 deficiency has also been found to lower mRNA expression of Sirt1. An analysis of the roles of Sirt1/Sirt3 in modulation of cellular function helps to rationalise clinical benefits of CoQ10 supplementation reported in heart failure, hypertension, non-alcoholic fatty liver disease, metabolic syndrome and periodontal disease. Hence, correction of CoQ10 deficiency joins a growing list of measures that have potential for amplifying health protective Sirt1/Sirt3 activities.


Assuntos
Doenças Mitocondriais , Sirtuína 1 , Ataxia/genética , Ataxia/metabolismo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Sirtuína 1/genética , Ubiquinona/deficiência , Ubiquinona/metabolismo , Ubiquinona/farmacologia
16.
J Mol Neurosci ; 72(5): 1125-1132, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35275351

RESUMO

INTRODUCTION: Coenzyme Q10 deficiency can be due to mutations in Coenzyme Q10-biosynthesis genes (primary) or genes unrelated to biosynthesis (secondary). Primary Coenzyme Q10 deficiency-4 (COQ10D4), also known as autosomal recessive spinocerebellar ataxia-9 (SCAR9), is an autosomal recessive disorder caused by mutations in the ADCK3 gene. This disorder is characterized by several clinical manifestations such as severe infantile multisystemic illness, encephalomyopathy, isolated myopathy, cerebellar ataxia, or nephrotic syndrome. METHODS: In this study, whole-exome sequencing was performed in order to identify disease-causing variants in an affected girl with developmental regression and Epilepsia Partialis Continua (EPC). Next, Sanger sequencing method was used to confirm the identified variant in the patient and segregation analysis in her parents. CASE PRESENTATION: The proband is an affected 11-year-old girl with persistent seizures, EPC, and developmental regression including motor, cognition, and speech. Seizures were not controlled with various anticonvulsant drugs despite adequate dosing. Progressive cerebellar atrophy, stroke-like cortical involvement, multifocal hyperintense bright objects, and restriction in diffusion-weighted imaging (DWI) were seen in the brain magnetic resonance imaging (MRI). CONCLUSIONS: A novel homozygous missense variant [NM_020247.5: c.814G>T; (p.Gly272Cys)] was identified within the ADCK3 gene, which is the first mutation in this gene in the Iranian population. Bioinformatics analysis showed this variant is damaging. Based on our patient, clinicians should consider genetic testing earlier to instant diagnosis and satisfactory treatment based on exact etiology to prevent further neurologic sequelae.


Assuntos
Epilepsia Parcial Contínua , Doenças Mitocondriais , Ataxia/genética , Criança , Epilepsia Parcial Contínua/genética , Feminino , Humanos , Irã (Geográfico) , Doenças Mitocondriais/genética , Debilidade Muscular , Ubiquinona/deficiência
17.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638552

RESUMO

Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease's onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.


Assuntos
Ataxia/genética , Ataxia/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/diagnóstico , Exoma/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Mitocondriais/diagnóstico , Debilidade Muscular/diagnóstico , Ubiquinona/análise , Ubiquinona/biossíntese , Ubiquinona/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
18.
Nanomedicine ; 37: 102439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256063

RESUMO

Depletion of coenzyme Q (CoQ) is associated with disease, ranging from myopathy to heart failure. To induce a CoQ deficit, C2C12 myotubes were incubated with high dose simvastatin. This resulted in a concentration-dependent inhibition of cell viability. Simvastatin-induced effects were prevented by co-incubation with mevalonic acid. When myotubes were incubated with 60 µM simvastatin, mitochondrial CoQ content decreased while co-incubation with CoQ nanodisks (ND) increased mitochondrial CoQ levels and improved cell viability. Incubation of myotubes with simvastatin also led to a reduction in oxygen consumption rate (OCR). When myotubes were co-incubated with simvastatin and CoQ ND, the decline in OCR was ameliorated. The data indicate that CoQ ND represent a water soluble vehicle capable of delivering CoQ to cultured myotubes. Thus, these biocompatible nanoparticles have the potential to bypass poor CoQ oral bioavailability as a treatment option for individuals with severe CoQ deficiency syndromes and/or aging-related CoQ depletion.


Assuntos
Ataxia/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Nanocompostos/química , Sinvastatina/efeitos adversos , Ubiquinona/deficiência , Ubiquinona/farmacologia , Animais , Ataxia/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Doenças Musculares/patologia , Consumo de Oxigênio/efeitos dos fármacos , Sinvastatina/farmacologia , Ubiquinona/química , Ubiquinona/genética
19.
Mech Ageing Dev ; 197: 111521, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34129891

RESUMO

Coenzyme Q10 (CoQ10) is an essential component of the mitochondrial electron transport chain. It is also an antioxidant in cellular membranes and lipoproteins. All cells produce CoQ10 by a specialized cytoplasmatic-mitochondrial pathway. CoQ10 deficiency can result from genetic failure or ageing. Some drugs including statins, widely used by inter alia elderly, may inhibit endogenous CoQ10 synthesis. There are also chronic diseases with lower levels of CoQ10 in tissues and organs. High doses of CoQ10 may increase both circulating and intracellular levels, but there are conflicting results regarding bioavailability. Here, we review the current knowledge of CoQ10 biosynthesis and primary and acquired CoQ10 deficiency, and results from clinical trials based on CoQ10 supplementation. There are indications that supplementation positively affects mitochondrial deficiency syndrome and some of the symptoms of ageing. Cardiovascular disease and inflammation appear to be alleviated by the antioxidant effect of CoQ10. There is a need for further studies and well-designed clinical trials, with CoQ10 in a formulation of proven bioavailability, involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in neurodegenerative disorders, as well as in metabolic syndrome and its complications.


Assuntos
Envelhecimento/metabolismo , Ataxia , Doenças Cardiovasculares , Suplementos Nutricionais , Doenças Mitocondriais , Debilidade Muscular , Doenças Neurodegenerativas , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/tratamento farmacológico , Ataxia/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Ubiquinona/metabolismo , Ubiquinona/uso terapêutico
20.
Biofactors ; 47(4): 551-569, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878238

RESUMO

Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.


Assuntos
Envelhecimento/genética , Alquil e Aril Transferases/genética , Ataxia/genética , GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Doença de Niemann-Pick Tipo C/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Envelhecimento/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Ataxia/metabolismo , Ataxia/patologia , Metabolismo Energético/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Transdução de Sinais , Ubiquinona/genética , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...